Pathophysiology of the kidney. Acute and chronic renal failure

Blagoi Marinov, MD, PhD
Pathophysiology Department
Medical University of Plovdiv

Kidney physiology

Regulation of red blood cell production
Regulation of blood pressure
Elimination of metabolic toxins and excess water through urine
Regulation of the blood’s acid-base balance
Regulation of mineral levels
Nephron anatomy and physiology

Functional renal syndromes

- Hypertension – реноваскулярна, паренхимна, ренопривна
- Edema – нефритни, нефрозни
- Osteodystrophy
- Altered diuresis
- Urinary syndrome
- Loss of ability to concentrate/dilute urine
- Altered homeostasis
- Hyper- hypocoagulability
- Azotemia
- Lithogenesis
Hypertension

- Chronic hypoperfusion
 - Renovascular hypertension
 - High Renin
- Nephrectomy
 - Renoprival hypertension
 - Low Renin

Edema

- Nephritic (decreased permeability)
 - Primary Na+ retention (primary hypervolemic)
 - ↓ Sympathetic tone
 - ↓ RAAS
 - Secondary Na+ retention (membranogenous)
- Nephrotic (increased permeability)
 - Proteinuria
 - ↓ Oncotic pressure
 - ↑ RAAS
 - ↑ Sympathetic tone
Osteodystrophy

P-retention

GFR \downarrow \downarrow \rightarrow 1, 25 \text{ Vit D}_3 \downarrow \downarrow \rightarrow \text{Metabolic acidosis (Retention)} \rightarrow \text{Osteodystrophy}

↓ \text{Ca}^2+ \rightarrow \text{Secondary PTH} \uparrow \rightarrow \text{Osteoclasts} \rightarrow \text{Osteopenia} \rightarrow \text{Osteodystrophy} \rightarrow \text{Demineralization}

Diuresis

Increased Polyuria > 2 L/24 h

Normal Normuria 0.5-2.0 L/24 h

Decreased Oliguria < 0.5 L/24 h

Absent Anuria < 0.15 L/24 h

Tubular dysfunction

Hypotonic

Omotic normotonic and hypertonic

Glomerular hypo- and afunction

Dehydration (hypovolemia)

Hyperhydration (hypervolemia)
Proteinuria and hematuria

- Increased permeability of glomerular basal membrane
- Overwhelmed (up to 1 g/24 h) or Suppressed tubular reabsorption
- Proteinuria (0.5 to 3.5 and >3.5 g/24 h)
- Microhematuria (>3 Ers)
- Cilindruria

Proteinuria

- Protein is not normally filtered at glomerulus and only trace amounts should be in urine
- Microalbuminuria-20-200 mcg/min (30-300mg/24hr)
- Proteinuria/albminuria - >200 mcg/min (albumin is more specific for glomerular disease than protein)

Consider: Ingestion of high-protein meal and vigorous exercise -> increase protein in urine
Anemia

- Inhibitors ↑
- Fe-deficit
- EPO ↓
- Bone marrow
- Suppressed erythropoiesis
- Microangiopathic hemolysis
- Protoporphyrin hyposynthesis

Lithogenesis

- Hyper-normocalciemia
- Hypercalciuria
- ↓ solubilizers in the urine
- Overwhelmed metastability limit of the urine
- Spontaneous crystallization of the urine solution
- Lithogenesis

Normocalciuria
- Hyper-oxaluria
- Hyper-uricosuria
- Hypocytraturia
Nosology of the kidney

- Glomerular
- Tubulointerstitial
- Toxic influences
- Neoplastic processes

The kidney is an “innocent bystander” in many systemic diseases

- Hypertension
- Hypotension
- Vasculitis
- Thrombotic diseases/DIC
- Systemic Lupus Erythematosus
- Sickle cell anemia
Tubulo-interstitial diseases:

- Cluster of abnormalities that, early on, affects the renal tubules and the interstitium
- Spares the glomeruli and the blood vessels

TIDs can be divided into the following categories:

- **Ischemic:** Acute renal failure, hypotension, blood loss, shock
- **Infections:** Acute and Chronic pyelonephritis, viruses, parasites
- **Toxins:** Drugs, analgesics, heavy metals (Pb)
- **Metabolic:** Urate, nephrocalcinosis, Oxalate
- **Neoplasms:** Multiple Myeloma
- **Immunologic reaction:** Transplant rejection
Urinary Tract Infections

- F:M ratio 8:1
 - Females 15-40 years of age
- Infecting organisms from patient’s own flora
- Bacteria reaches the kidney by:
 - Ascending route (more common)
 - Blood borne (more dangerous)

Urinary Tract infections:

- Most common organisms:
 - Gram negative bacilli (E. Coli is the most common)
 - Proteus, Klebsiella, Enterobacter, Mycobacteria (T.B)
Predisposing factors for UTI:

- Diabetes
- Pregnancy
- Obstruction (BPH, Tumors..)
- Reflux
- Immunosuppression
- Instrumentation (Catheters, surgery...)

Acute Pyelonephritis (Microscopic)

- Neutrophils in the interstitium
- Tubular damage (later)
- Microabscesses in the interstitium
- May lead to perinephric abscesses (Very painful)
Pathogenesis of tubulointerstitial lesions

- Bacterial colonisation (E. coli, Proteus, Clebsiela)
- Difficult urine outflow (urostatis)
- Contractile dysfunction of urinary ducts
- Inefficient defences in urinary ducts
- Reflux
- Suppressed macrophages
- Hyperosmolality

Tubulointerstitial invasion

- Persistent bacterial inflammation

Glomerulonephritis

Definition:
Renal disease characterized by inflammation of the glomeruli, or small blood vessels in the kidneys.

Glomerulonephrites are categorised into several different pathological patterns, which are broadly grouped into non-proliferative or proliferative types. Diagnosing the pattern of GN is important because the outcome and treatment differs in different types.
Pathogenesis of glomerulonephritis

Immunologic conflict

- **Towards own Ag (autoimmunity)**
 - Similar to GBM bacterial Ag (immune)
- **Towards implanted foreign (nonglomerular)**
 - Ag bacterial, viral (immune)

Construct in situ (on site)
- Circulating immune complexes
 - Forcefully “Deposited”
 - or
 - Actively captured
Nephrotoxicity of the complexes depends on:

- **Size** – small to medium;
- **Ag-Ab avidity** – high;
- **Clearance** – low;
- **Electrical charge** – polycationic;
- **Valence** - mono-, polyvalent;
- **Ratio** – excess of Ag

Immune (autoimmune) inflammation

- **Ab mediated complement citotoxicity**
- **Ab mediated cellular citotoxicity**
- **Neutrophil and/or monocite attack**
- **Proliferation of cells with growth potential** – monocites, fibroblasts, mesangial cells
Signs of glomerular damage are:

- Increased permeability of glomerular basal membrane
- Drop in overall glomerular filtration rate
- Disfunction of JGA (Juxtaglomerular apparatus)
- Glomerular-tubular disbalance

Acute glomerulonephritis

- Most causes are infectious
 - Follows a streptococcal infection (when taking history ask client about recent infections)
- Related to systemic diseases
 - Lupus
Signs and Symptoms

- **Hematuria**: dark brown or smoky urine
- **Oliguria**: urine output is < 400 ml/day
- **Edema**: starts in the eye lids and face then the lower and upper limbs then becomes generalized; may be migratory
- **Hypertension**: usually mild to moderate

Nephrotic Syndrome

- Condition of increased glomerular permeability that allows larger molecules to pass through the membrane into the urine and be removed from the blood
- Severe loss of protein into the urine
Clinical Manifestations Of Nephrotic Syndrome

- Severe proteinuria
- Hypoalbuminemia
- Hyperlipidemia
- Edema
- Hypertension
- Renal vein thrombosis may occur
- May progress to ESRD without tx

Chronic Glomerulonephritis

- A slow, progressive disease that can be caused by primary (Nephrotic & Nephritic Syndromes) or secondary disorders (SLE, Good pasture's)
- Typically develops asymptptomatically over many years
- Hypertension, proteinuria and hematuria exhibited with progression of disease
- Late stages display uremic symptoms of azotemia, nausea, vomiting, dyspnea and pruritis
- Leads to chronic renal failure (CRF)
Renal failure

Failure to excrete nitrogenous waste and electrolyte imbalance.

- Criteria for diagnosis (lab definition):
 - Cr increase of .5 mg / dl.
 - Increase in more than 50% over baseline Cr.
 - Decreased in calculated Cr Clearance by more than 50%.
 - Any decrease in renal function that requires dialysis.

Acute renal failure

- Acute renal failure - ARF, now increasingly called acute kidney injury, is a rapid loss of kidney function.
Acute renal failure

- Spasm of v. afferens
- Dilation of v. efferens
- Decreased kidney permeability
- Increased tubular pressure
- Plugs detrite, cylinders
- Cellular tubular edema
- Tubular compression “glaucoma mechanism”
- Tubulorrhesis (interstitial urine spill)

Chronic renal failure

Definition:

Progressive tissue destruction with permanent loss of nephrons and renal function
Chronic renal failure

Biology – loss of working nephrons

Progress – increasing loss nephrons (%)

Stages – compensated, decompensated, uremic, comatous

Clinica syndromes – according to the main disease, complications, stage

Risk factors

- Age > 60 years
- Race or ethnic background
 - African-American
 - Hispanic
 - American Indian
 - Asian
- History of exposure to chemicals/toxins
 - Cigarette smoke
 - Heavy metals
- Family history of chronic kidney disease
Chronic vs. Acute Renal Failure

- **Acute Renal Failure (ARF):**
 - Abrupt onset
 - Potentially reversible

- **Chronic Renal Failure (CRF):**
 - Progresses over at least 3 months
 - Permanent- non-reversible damage to nephrons

Causes of CRF

- Diabetic Nephropathy
- Hypertension
- Vascular Disease
- Polycystic Kidney Disease/Genetics
- Chronic Inflammation
- Obstruction
- Glomerular Disorders/ Glomerulonephritis
Pathophysiology of CRF

Progressive destruction of nephrons leads to:
- Decreased glomerular filtration, tubular reabsorption & renal hormone regulation
- Remaining functional nephrons compensate
- Functional and structural changes occur
- Inflammatory response triggered
- Healthy glomeruli so overburdened they become stiff, sclerotic and necrotic

Structural Changes of CRF

- Epithelial damage
- Glomerular and parietal basement membrane damage
- Vessel wall thickening
- Vessel lumen narrowing leading to stenosis of arteries and capillaries
- Sclerosis of membranes, glomeruli and tubules
- Reduced glomerular filtration rate
- Nephron destruction
Functional Changes of CRF

- The Kidneys are unable to:
 - Regulate fluids and electrolytes
 - Balance fluid volume and renin-angiotensin system
 - Control blood pressure
 - Eliminate nitrogen and other wastes
 - Synthesize erythropoietin
 - Regulate serum phosphate and calcium levels

Four Stages of CRF

- **Reduced Renal Reserve** (Silent): no symptoms evident- GFR up to 50ml/min

- **Renal Insufficiency**: ½ function of both kidneys lost- GFR 25-50 ml/min

- **Renal Failure**: GFR 5-25 ml/min

- **End Stage Renal Disease**: GFR less than 5 ml/min
Signs & Symptoms

Peritoneal dialysis
Hemodialysis

Kidney transplantation
Thank you